Lesson Plan -

Topic: Congruent Triangles

Objective: To prove triangles are congruent by SSS, SAS, AAS and RHS

Resources: Geostrips, worksheet, video, protractor, ruler, paperclips

Note: 30cm ruler is not enough to measure the length of the red strip; need to

determine time taken for each part of the lesson

Number of Lessons: 1

Introduction

- Students are grouped and seated at the different stations in the classroom
- Video see minutes for meeting 2
- Elicit the meaning of the word 'congruency'

Development

- Each station in the classroom will have an activity either on SSS, SAS or RHS
- Students attempt the task at their station for ____ minutes and move on to the next task.

Conclusion

- Students present what they found/learned in each task
- Conclude with also referring to AAS
- Present follow-up worksheet

Task - SAS

Take a look at the three triangles provided.

- 1. Measure the length of the **longest** side of each triangle (the red strip).
- 2. Measure the length of the blue side of each triangle.
- 3. Find an angle of 40° in each given triangle and use a paperclip to mark the position of the angle on the triangles.
- 4. Which two triangles are congruent and why?
- 5. What do you notice about the position of the angle?
- 6. Can any two triangles be congruent if given any two sides and any angle?

Task – SSS

- Using the red, yellow and white geostrips, try to make a triangle exactly as the one provided.
- 2. Did you manage?
- 3. Which colours did you use to make one identical to the one provided?
- 4. Measure each side of the two triangles and write down your answers below.

Triangle provided	Triangle you made
Yellow:	Yellow:
White:	White:
Red:	Red:

5. What can you conclude about the three sides of the two triangles?

Task - RHS

- 1. Measure the **hypotenuse** and the **white side** of this triangle.
- 2. What type of triangle is this? (right-angled, isosceles, equilateral)
- 3. Mark the right angle using a paperclip on the given triangle.
- 4. Use the other strips provided. Can you create another right-angled triangle using the same length for the hypotenuse and white side, but a different length for the third side?
- 5. Concluding question...