## Task 1 Resources: Ruler, protractor, paperclip

Follow the guidelines to complete the task.

- Measure the length of the longest side of each triangle (the red strip).
- 2. Measure the length of the blue side of each triangle.
- 3. Use a **protractor** to find an angle of **40**° in each given triangle. Use a paperclip to mark the position of the angle on the triangles.
- 4. What do they all have in common? However, which two triangles are congruent and why?
- 5. What do you notice about the position of the angle?
- 6. Can any two triangles be congruent if given any two sides and any angle?

| Т | ~ | c | b                  | 2 |
|---|---|---|--------------------|---|
| - | u | Э | $\mathbf{\Lambda}$ | Z |

Follow the guidelines to complete the task.

1. Measure the sides of all 3 triangles. List the measurements in the table provided.

| Triangle A | Triangle B | Triangle C |
|------------|------------|------------|
|            |            |            |
|            |            |            |
|            |            |            |

2. Which triangles are congruent and why?



## Task 3 Resources: Geostrips, Ruler, Protractor, Paperclip

Follow the guidelines to complete the task.

- Measure the hypotenuse and the red side of the given triangle.
- What type of triangle is this?
   right-angled, isosceles, equilateral
- 3. Mark the right-angle using a paperclip on the given triangle.
- 4. Use the other strips provided. Can you create another right-angled triangle using the same length for the hypotenuse and white side, but a different length for the third side?
- 5. If two right-angled triangles are congruent, what can you conclude about the three sides of the two triangles?

## Task 4

## **Resources: Calculator**

Follow the guidelines to complete the task.

Each triangle below is given the length of one side and two of the angles.

**NOTE!** The diagrams are not drawn to scale, you cannot use a ruler or protractor. You may use a calculator if your wish.

- 2. What do all three triangles have in common?
- 3. Which two triangles are exactly the same? Give two reasons.

